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Design and characterisation of the staggered herringbone mixer
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Abstract

The staggered herringbone mixer was studied using computational fluid dynamics (CFD) and particle tracking methods. The positions of tracer
particles as well as the stretching of a fluid element associated with each tracer particle were tracked using a fourth order Runge-Kutta integration
scheme with adaptive time stepping. Striation patterns observed were in qualitative agreement with experimental work from literature. The computed
stretch values were found to be log-normally distributed. The specific stretch per period for a spatially periodic flow was computed. This allows
for an estimation of the required length for complete mixing by further accounting the penetration depth achieved by molecular diffusion. The
microchannel lengths for complete mixing computed using the mean stretch were lower than those obtained experimentally. This was attributed
mainly to the fact that the experimentally derived values were measured in the central 50% of the mixer cross-section where striation thickness
reduction can be observed to be slower. Furthermore, the specific stretch per period represents the mean stretch value while in reality the stretch
values are distributed log-normally. In the design of mixers, a conservative estimate of the required mixing length can be obtained by replacing the
mean stretch per period with a value which represents the cut-off point for the lower 10% of the distribution. The design lengths computed using
these values were slightly higher than experimental ones and found to exhibit the same trend with increasing Peclet number. The pressure drop at

various Re was also investigated and was found to be slightly lower than that of an equivalent grooveless channel.
© 2008 Elsevier B.V. All rights reserved.
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. Introduction

In recent years, microfluidic systems have gained widespread
pplications in a number of fields such as analytical chemistry,
igh-throughput synthesis and microchemical processing. One
spect of microfluidic systems that has attracted considerable
nterest is the mixing of fluids in miniaturized systems. Fluid
ows in miniaturized systems are characterized by low values
f Reynolds number (Re = ρud/μ). At low-Re number, the flow
s laminar and mixing occurs only by molecular diffusion. The
haracteristic length scales in microfluidic applications are fre-
uently of the order of several hundred microns, which allow
apid mixing by molecular diffusion alone. Examples of such
ixers include the T-type and Y-type micromixers [1,2]. How-

ver, in cases where the molecular diffusivity is very low (in

iotechnology applications for example, molecular diffusivity
or proteins are typically around 10−11 m2/s), mixing by molec-
lar diffusion becomes very slow, requiring lengths of up to
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everal metres for complete mixing to occur. Various micromixer
esigns have been reported in the literature. These include var-
ous flow lamination mixers such as interdigital micromixers
3–5], split and recombine mixers [6], geometric focusing mix-
rs [3–5,7], secondary flow micromixers [8] and chaotic mixers
9–11]. Detailed reviews of the various types of micromixers are
vailable elsewhere [12–15].

Chaotic micromixers, where the fluid volumes are stretched
nd folded over the cross-section of the channel, are particu-
arly effective for reducing the mixing length. The stretching
nd folding of fluid volumes proceed exponentially as a func-
ion of the axial distance travelled, accelerating mass transfer
y increasing the interfacial area and decreasing the striation
hickness over which diffusion must occur for complete homog-
nization. One of the earliest reports on chaotic micromixers
as based on placing microstructured objects within the flow
assage on one side of the microchannel walls. Bas-relief struc-
ures, such as oblique ridges and staggered herringbones on the

oor of channels were used to induce steady chaotic flows in

he slanted groove [16] and staggered herringbone micromixers,
espectively [17]. The staggered herringbone offered superior
ixing performance at low Re numbers, low resistance to flow
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Nomenclature

a ratio of the groove half height to the channel
height

A COV of unmixed inlet stream, see (6)
B rate of decrease of the COV, see (6)
COV coefficient of variance
d characteristic length (m)
dE channel equivalent diameter (m)
D diffusion coefficient (m2/s)
h channel height (m)
Hn normalised helicity
l fluid filament vector tracked for stretching com-

putations
l0 initial condition for vector l
L length (m)
Lcycle length per mixing cycle (m)
m mean
n mixing cycle number
nmix number of cycles for complete mixing
n90 required number of mixing cycles computed using

α90 values
N number of particles
Ni number of particles cell i
NT total number of particles within the grid
NT0 initial number of tracked particles
N̄ average particle concentration per cell
p degree of asymmetry of herringbone grooves
Pe Peclet number
�P pressure drop (Pa)
q Groove wave vector
Q volumetric flow (m3)
Re Reynolds number
s(0) striation thickness at time = 0 (�m)
s(n) striation thickness after n cycles (�m)
S Shannon entropy (bits)
t time (s)
u velocity (m/s)
ū average velocity (m/s)
v(x) particle velocity as a function of position (m/s)
(∇v)T velocity gradient tensor (s−1)
w channel width (�m)
x vector of particle position
y mixing length (m)
ydif diffusional mixing length (m)
y50 mixing length computed from α50 (m)
y90 mixing length computed from α90 (m)

Greek letters
α stretching function
α50 stretch per period (based on λg,50 values)
α90 stretch per period (based on λg,90 values
δ Lyapunov exponent (s−1)
δx penetration distance (m)
θ Groove angle (◦)

λ stretching experienced by vector l, see (3)
λg,50 geometric mean stretch over all vectors on a given

cross-section
λg,90 cut-off point of the distribution of stretch values

where 90% of stretch values are higher (see Fig. 9)
μ viscosity (Pa s)
ρ density (kg/m3)
σ standard deviation
σ2 variance (number based)
τ average residence time per mixing cycle (s)
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ϕ mass fraction

nd is relatively easy to fabricate using planar lithographic meth-
ds. It was found to work well for Reynolds numbers from 1 to
00 and for Peclet numbers of up to 1 × 106, with the required
ixing length increasing only logarithmically with the Peclet

umber.
The flow patterns in bas-relief structured channels have been

tudied extensively. A number of numerical studies have been
arried out on grooved microchannel mixers which consid-
red the effects of various geometric parameters on mixing
erformance. Many of the numerical approaches used for char-
cterising mixing performance are based on methods used for
acro-scale static mixers such as the coefficient of variance,

ntensity of segregation, stretching histories, Poincaré sections,
ate of strain tensor, number of striations and residence time
istributions [18–20]. Wang et al. [21] evaluated the slanted
roove micromixer using a computational fluid dynamics (CFD)
ackage to simulate the 3D velocity field for particle tracking
urposes as well as to study two-fluid mixing. Streaklines from
lanted groove microchannels twist in a helical shape, indicating
olding and stretching of fluids. Poincaré maps were generated
y advecting one or a series of passive particles through a series
f periodic planes located at the end of each mixing segment
nd each position of the particle which hits this plane was then
ecorded. The Poincaré map obtained indicated an increase in
ow irregularity on increasing the groove aspect ratio, with par-

icle trajectories circling around the flow axis. By counting the
ots per circle in the Poincaré map, the length required for one
omplete recirculation was computed, which was then used as a
asis for evaluating mixing performance. The length required
or one complete recirculation decreased exponentially with
ncreasing groove aspect ratio. The mean helicity, measured
rom the angle between the longitudinal channel axis and the
nterfacial line of two fluid streams shifted by the helical flow
attern, was found to be independent of flow velocity and was
function of geometric parameters only, especially the aspect

atio of grooves. Schönfeld and Hardt [22] simulated the helical
ows produced in the slanted groove micromixer. The relative

ransverse velocities as a function of the vertical position were
valuated and found to be in good agreement with experimen-

al results [23]. Double-sided structured channels were found to
ncrease the relative transverse velocity significantly. The rela-
ive transverse velocities were also found to be independent of
eynolds number.
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Aubin et al. [24] compared the flow pattern and mixing
ehaviour in both the slanted groove and staggered herringbone
ixers using CFD and particle tracking methods. Better mix-

ng was observed in the staggered herringbone micromixer due
o the formation of two helical flows, with alternating small and
arge vortices rotating in opposite directions. Calculation of vari-
nce of the dispersion of particle tracers and the mean stretching
f fluid filaments were found to be good methods for character-
zing the mixers while the rate of strain tensor appeared not to
e well adapted for the mixers studied. More recently, Aubin
t al. [25] studied the effects of geometric parameters such as
roove depth, number of grooves per cycle and groove width on
he mixing quality. An alternative method for characterizing the

ixing performance was introduced, which is based on a statis-
ical method called nearest neighbour analysis. Mixing quality
as found to improve with deeper and wider grooves, but was

elatively unaffected by the number of grooves per cycle.
Simple analytical models have been derived for the flow

ehaviour in both slanted groove and staggered herringbone
icromixers [23,26]. Poincaré maps and mixing simulations

sing the models indicate the existence of an optimal degree of
symmetry, p (fraction of channel width occupied by the wide
rm of the herringbones) for the herringbone grooves in the
nterval 7/12 < p < 2/3. For a fixed value of the ratio of trans-
erse to axial velocity, a minimum axial length per half-cycle
as required, below which mixing is poor. Yang et al. [27] pre-

ented a numerical study of the effects of geometric parameters
uch as depth ratio of the grooves, asymmetry index, groove
ntersection angle and upstream to downstream channel width
atio on the mixing performance of the staggered herringbone
ixer. Two dominant mechanisms of mixing were identified;

he stretching and folding of the interface due to the vertical
otions of flow at the groove’s side edge and the increase in

ontact area between the two fluids due to underside fluid trans-
ortation. The groove depth ratio and asymmetry index were
ound to be the most influential. Results from a pressure loss
nalysis indicated better mixing with higher groove flow rate,
hich can be achieved by decreasing the asymmetry index and

ncreasing the depth ratio of the groove. The effect of the groove
symmetry and the number of grooves per half cycle on the
ixing performance was also investigated by Li and Chen [28],

sing the Lattice-Boltzmann method. The optimal value for the
bove geometric parameters were found to be 0.6 for the groove
idth fraction (a measure of the groove asymmetry) and 5–6
rooves per half cycle.

Kang and Kwon [29] compared the flow characteristics in
lanted groove, staggered herringbone and barrier embedded
lanted groove micromixers using a coloured particle tracking
ethod. Transverse velocity vector plots at different down-

tream locations as well as Poincaré maps obtained for all three
icromixers indicated chaotic flow for both staggered herring-

one and barrier embedded micromixers, but no notable chaotic
echanism was observed for slanted groove micromixers, in
greement with results reported earlier [21]. Particle tracers
ere labelled with a specific colour and the particle trajectories

racked for 20 periodic units. The coloured particle distributions
ere then used to evaluate the mixing quality both qualitatively
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s well as quantitatively, using a new method based on mixing
ntropy. The staggered herringbone was found to give the best
ixing performance.
Liu et al. [30] presented a numerical study of mixing pure

ater and a solution of glycerol in water, in both the 3-D serpen-
ine and staggered herringbone mixers. The effect of different
uid physical properties was examined by varying the amount of
lycerol in the glycerol/water solution ϕ (i.e. the mass fraction
f glycerol in water) at two different Reynolds number, Re = 1
nd 10. The mixing performance at both Re, measured via a
ixing index, decreased with increasing ϕ, although the varia-

ion in mixing index was smaller at higher Re. Tracer particles
nitially located at the two-fluid interface were advected inside
he mixer and the distribution of tracer particles at the outlet
ross-section were more or less identical at different Re and at
ifferent ϕ. Inspection of the cross-section mixing concentra-
ion profiles obtained from the numerical simulation revealed
hat the breakdown and deformation of the interface between
he two fluids at Re = 1 and 10 were similar and independent of
, although the gray intensity (which represents the mixedness
f the two fluids) at lower Re (at all ϕ) was more uniform than the
orresponding picture at higher Re. This was due to the longer
esidence time available for diffusional mixing at lower Re. The
ray intensity gradually turned less uniform with increasing ϕ,
t both Re, due to lower diffusivity values. Unlike the 3D ser-
entine mixers, the flow advection in the staggered herringbone
ixer was not enhanced with increasing Re, in agreement with

xperimental observation [17].
The velocity generated by the grooves in a staggered her-

ingbone mixer and the effect of varying Re on the generation
f cross-channel flow and mixing have been investigated in
etail by Hassell and Zimmerman [31]. Three representative
eometries were evaluated; a single herringbone groove, a chan-
el section representing one continuous herringbone cycle and
third representing a system in which the orientation of the

rooves were constantly switched. As Re increased, the amount
f entrained fluid in the groove decreases and the fluids in the
roove move further across the groove before re-entering the
ulk channel flow at the channel edges. Increasing the groove
epth results in increased fluid entrainment in the grooves lead-
ng to an increase in transverse velocity component in the bulk
ow, in agreement with earlier studies [25]. Successive grooves
esulted in an increase in the transverse velocity components
nd a 14% increase in fluid entrainment in grooves compared to
he case of the single groove. The fluid flow in the bulk channel
ow was found to exhibit low helicity which increased slightly
t higher Re.

Recently an alternative method for characterizing and quan-
ifying the degree of mixing was presented by Camesasca et
l. [32]. The Shannon entropy S, which has been previously
mployed for a variety of practical applications in polymer
rocessing, was used to compare the mixing performance in
plain microchannel, a slanted groove microchannel as well
s the staggered herringbone micromixer. The staggered her-
ingbone mixer was shown to perform better than the slanted
roove mixer, with no mixing observed in the plain channel,
s expected. The method can also be applied to experimen-
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field described in the following section, allows the particle tra-
jectories in the micromixer to be computed.

Table 1
Mixer geometry and fluid properties

Mixer
Channel width, w (�m) 200
Channel depth, h (�m) 85
Length per cycle (mm) 1.516
Number of grooves per cycle 12
Relative groove depth (a) 0.18
Wave vector, q (�m−1) 2π/100
Groove asymmetry, p 2/3

◦
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al data; using experimentally derived pictures of the mixer
ross-section for the staggered herringbone mixer, the change
n entropy with increasing number of cycles was compared to
he values obtained numerically, with excellent agreement in
oth values. An alternative way to pattern ridges on the walls
f a simple straight channel to achieve chaotic mixing was also
resented [33]. Three types of non-periodic patterns were gen-
rated using the Weierstrass fractal function to position the tip
f ‘V’ grooves on the bottom channel wall and the performance
f these mixers was compared to a design which was similar
o the staggered herringbone mixer. Qualitative analysis of the
ross-sectional velocity field along the length of the channel as
ell as pathlines of particle trajectories and trajectory ‘beams’

onfirmed the presence of chaotic flow for all four mixers. Eval-
ation of Lyapunov exponents allowed for a limited assessment
f mixing behaviour while entropic analysis allowed a more
lobal characterization of mixing performance. Two of the new
ixers designed were found to be more efficient than the one

ased on the staggered herringbone mixer. Generalized fractal
imensions associated with the interface of the two fluids to be
ixed were computed for all four mixer designs and the results
ere consistent with results from entropic mixing analysis.
In the current work, the flow behaviour of the staggered her-

ingbone mixer is studied using computational fluid dynamics
nd particle tracking methods. Several methods which have pre-
iously been reported for characterising the mixing performance
n macro-scale static mixers such as the coefficient of variance of
he distribution of particle tracers and the stretching histories of
he particles, are used. However, in contrast with previous work
where mixing quality is determined at a given position along the
ength of the mixer), a method for estimating the required mix-
ng length for complete mixing, especially useful in designing

icromixers, is described. Using the geometric mean stretch
omputed from the stretching histories, the minimum mixing
ength required for complete mixing is computed by taking into
ccount the rate of striation reduction and diffusional penetration
istance.

. Numerical methods

The mixer geometry used was kept consistent with that
eported by Stroock et al. [17]. The channel width is 200 �m
nd the channel height is 85 �m. The staggered herringbone
ixer is composed of several mixing cycles in series. Each mix-

ng cycle is composed of two sets of herringbone grooves which
re asymmetric with respect to the centre of the channel in the
xial direction. The orientation of the asymmetric herringbones
s switched between each half cycle, allowing a correspond-
ng switch in the centre of rotation in the transverse flow. The
rooves are placed at an angle θ with respect to the axial direc-
ion and the degree of asymmetry p is measured by the fraction
f channel width occupied by the wide arm of the herringbones.

The full depth of the grooves is 30.6 �m, given by 2ah, where

is the ratio of groove half-depth to full channel height and the
roove wave vector, q is 2π/100 �m−1, as shown in Fig. 1. Due
o the repeating cycles, the velocity field in the axial direction
an be assumed to be periodic and hence the velocity field in one

F

Fig. 1. Staggered herringbone mixer (from [17]).

ixing cycle can be obtained and reused repeatedly for succes-
ive cycles. Details of the mixer geometry and fluid properties
re summarised in Table 1.

.1. Velocity field

The 3D velocity field for one complete mixing cycle was
omputed using COMSOL Multiphysics which is a commercial
odelling software based on the finite element method. The sim-

lations were run as steady state incompressible Navier–Stokes
ow, with periodic boundary conditions at both inlet and outlet.
his enables long streamline integrations to be performed using

he velocity field of a single mixing cycle if entrance flow effects
re neglected. No-slip boundary conditions were applied at all
ther channel walls. The volumetric flow through the mixer was
et by specifying a pressure drop and setting the pressure at the
utlet equal to the pressure at the inlet minus the pressure drop.
he number of mesh elements in the model is 30712 and the
imulations were performed on Windows XP with Pentium IV
.00 GHz CPU and 2 GB of RAM.

Evaluation of mixing performance is typically carried out
y simultaneously solving the Navier–Stokes and continuity
quations for the velocity field and the convection–diffusion
quations for the concentration profiles in the mixer. However,
his approach introduces artificial diffusive fluxes due to dis-
retisation errors, especially for liquid/liquid mixing [10,22].
agrangian particle tracking methods, where the trajectories of
assless tracer particles are computed have been used to char-

cterize the mixing performance, to avoid numerical diffusion
roblems [18–21,24,25,29]. The 3D velocity field was first com-
uted as described above. Streamline integration of the velocity
Groove angle, θ ( ) 45

luid properties
Density (kg/m3) 1200
Viscosity (Pa s) 0.067
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.2. Particle tracking computations

The particle trajectories in the herringbone mixer were
btained by solving the vector equation of motion for each
article:

dx

dt
= v(x) (1)

For a particle at a given location (x, y, z), the particle velocity
s obtained by interpolating the velocity field from the solution
f the Navier–Stokes and continuity equations. The COMSOL
article tracking algorithm was modified to allow for the veloc-
ty field obtained in a single mixing cycle to be utilised over
uccessive mixing cycles. The algorithm to achieve this was set
p as follows:

(i) Based on the particle axial position and mixer length per
cycle, establish in which cycle number the particle is
located.

(ii) Determine the equivalent position in the first mixing cycle
(where the velocity field solution is available).

iii) Interpolate the velocity field solution to obtain the velocity
at that position.

iv) Calculate new position by solving (1).

The particle moves to a new position down the channel length
t every time step, information about the new coordinates is
tored and the procedure repeated for the specified number of
ime steps. A standard fourth order Runge-Kutta method with
xed time steps was used. The size of the time step was selected
arefully to avoid losing particles (too big a time step will result
n the particle moving to a position outside the solution domain
nd the particle is then ‘lost’) while at the same time avoiding
xcessive computation time. The simulations were carried out at
wo time different steps, at h and h/2, and the results compared.
f the difference between the two was small, then the solution
t h was accepted, otherwise the time step was reduced and the
rocedure repeated. The coordinates of the particle at the end of
very mixing cycle were recorded.

.3. Stretching

The stretching of material lines and surfaces by a flow is
seful for determining the interfacial area between components
hich is a measure of the mixed state. A convenient means of

haracterizing the stretching by the flow is to study the local
ehaviour of small material vectors. A second particle tracking
lgorithm was set up which allows the stretching of an infinites-
mal material vector l associated with each tracer particle to
e computed in addition to tracking the position of particles

18,19], using a fourth order Runge-Kutta method with adaptive
ime stepping. At the start of the mixer, the initial position of
ach tracer particle was specified and an initial material vector,
t=0 = [1, 0, 0] was assigned to each tracer particle. The evolution

w
c
t
d
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f vector l is tracked by integrating (1) together with

dl

dt
= (∇v)T l (2)

The total accumulated stretching λ experienced by each ele-
ent after some time is defined as

= |l|
|l0| (3)

. Results and discussion

.1. Flow patterns

The cross-sectional velocity vector plots at various locations
long one mixing cycle at Re = 0.01, as indicated in Fig. 2(a),
re shown in Fig. 2(b). The flow patterns are complex with a
trong transverse component (x and z components). As the flow
oves along in the axial direction, two counter rotating vor-

ices are produced, one large and one small, which meet over
he sharp edge (at x = 1.3 for locations A and B and x = 0.7 for
ocations C and D) of the herringbone grooves (see Fig. 2) and
lternate periodically depending on the direction of asymmetry
f the herringbone grooves. The maximum and minimum veloc-
ty in the x, y and z directions are also indicated in Fig. 2, where
he negative sign represents flow in the opposite direction. The
elocity vector plots are in agreement with those reported else-
here [24,29]. The transverse flow velocity is approximately

n order of magnitude lower than the forward axial component,
ith the velocity in the long arm of the herringbone higher than

hat in the short arm. Fig. 3 shows the trajectories for 10 particles
nitially located across the mixer cross-section. The particle tra-
ectories show small-scale helical motion similar to the results of

ang et al. [21], which indicates folding and stretching of fluids.
he herringbone grooves aid mixing not only by creating sec-
ndary helical flow but also by ‘ditch mixing’ where fluid from
ne side of the channel is transported to the opposite side of the
hannel in the grooves and rolls out from the grooves at the side
dge back into the main flow in the channel [34]. This results
n increased contact area between the two fluids that enhance

ixing. Mixing in the staggered herringbone mixer is therefore
nhanced by both the strong transverse flow which stretches
nd folds the fluid interface and increased contact area by ditch
ixing.

.2. Mixing simulation

To visualize the mixing in the staggered herringbone mixer,
8000 tracer particles were initially placed uniformly in one-

alf of the channel cross-section at the mixer entrance, starting
t 5 �m away from the walls in the x-direction and 2 �m away
rom the z-direction, corresponding to around 2% of the length
cales in both directions, to avoid particles getting trapped in
hose areas where the velocity is close to zero. All tracer particles

ere released simultaneously and the position of the tracer parti-

les was tracked along the mixer length as described earlier. The
racer particles travel along the mixer length at different speeds
ue to the laminar flow profile and the presence of dead volumes
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Fig. 2. Cross-sectional velocity vector plots at various axial positions for Re = 0.01. (a) Axial position of the cross-sectional velocity vector plots. (b) Velocity vector
plots.
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ig. 3. Particle trajectories at 10 different initial locations ([x (�m), z (�m)] = [1
199, 38]) along eight mixing cycles for t = 0–10 s and Re = 0.01. (a) 3D view (y

n the herringbone grooves. Plots of particle distribution in the
ixer cross-section were obtained by recording the particle posi-

ions once they reached the end of each mixing cycle. This yields
triation patterns which are equivalent to those observed with a
ontinuous feed at steady state with the same initial conditions
ecause the trajectories followed by the tracer particles are time
ndependent; a tracer follows the same path as all other tracers
hat pass through the same starting position regardless of its time
f introduction [26]. The mixing simulations were carried out
t Re = 0.001, 0.01, 0.03, 1 and 10. The first three conditions
Re = 0.001, 0.01 and 0.03) correspond to three experimental
onditions used by Stroock et al. [17]. The last two conditions
ere selected so that the effect of a larger range of Reynolds
umber can be evaluated.

The mixer cross-sectional plots at Re ∼ 0.01 at the mixer
nlet and at various locations downstream of the entrance are
hown in Fig. 4. The simulation plots were compared to pub-
ished experimental confocal micrographs at the same conditions
17] and the evolution of striation patterns can be seen to be
ualitatively similar, indicating that the numerical simulation
ethod used can capture the flow phenomena accurately. Small
ifferences between the simulation and experimental micro-
raphs can be attributed to the fact that the computed velocity
eld assumes identical fluid properties for the two inlets to
e mixed as this allows the velocity field to be used repeat-

t
(
d
A

, [23, 38], [45, 38], [67, 38], [89, 38], [111, 38], [133, 38], [155, 38], [177, 38],
tion is compressed). (b) X–Z plane viewed from outlet.

dly over successive mixing cycles while in practice this was
learly not the case. Additionally, the simulation plots do not
ake into account molecular diffusion effects. The simulation
lots were also observed to be qualitatively similar to simulation
lots reported elsewhere [26,29]. The cross-sectional plots at the
ame axial positions were observed to be qualitatively similar
t all Re, with no major differences in the patterns of the tracer
articles. The flow advection in a staggered herringbone mixer
as found to be independent of Reynolds number, in agreement
ith other numerical studies on the staggered herringbone mixer

26,30] as well as experimental results where the flow patterns
ere found to be qualitatively similar up to Re = 100 [17].

.3. Coefficient of variance

While the mixing simulations allowed for a qualitative assess-
ent of mixing in a staggered herringbone mixer, a quantitative

escription of the mixing quality affords a more practical means
f evaluating the mixing performance. The tracer mixing simula-
ions, carried out with NT0, the total number of particles = 7872
nd evaluated at Re = 0.001, 0.01, 0.03, 1 and 10 were quan-

ified by computing the number-based coefficient of variance
also known as relative standard deviation), which is the stan-
ard deviation of the particle distribution divided by the mean.
n x–z grid of 20 × 10 equal-sized cells (each cell with approxi-
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ig. 4. Comparison of the evolution of particle tracer positions along the mixe
ixer. Both the simulation plot and experimental confocal micrographs were ob

ate dimensions of 10 �m × 8.5 �m) was placed over the mixer
ross-section at the end of each mixing cycle. The number of par-
icles in each cell, Ni was computed based on the position of each
article on the mixer cross-section and the average particle con-
entration per cell was then computed as N̄ = NT/(20 × 10),
here NT is the total number of particles within the grid at the

nd of each mixing cycle. The variance σ2 was calculated from

2 =
∑M

i=1(Ni − N̄)2

M − 1
, M = 20 × 10 (4)
The number based coefficient of variance (COV) was then
omputed from the following equation:

OV = σ

N̄
(5)

t
s
d
T

th with confocal micrographs (from [17]) of an actual staggered herringbone
d at Re = 0.01.

When the COV is zero, an ideal homogenization of the mix-
ure is obtained. The coefficient of variance at different mixing
ycles can be fitted to an equation of the form

σ

N̄
= A exp(−Bn), n = mixing cycle number (6)

The coefficient B [18,19] represents the rate of decrease of the
oefficient of variance per mixing cycle and provides a simple
uantitative estimate of the mixing rate while the coefficient

represents the coefficient of variance of the unmixed inlet
tream. The results of the coefficient of variance plotted against

he number of mixing cycles at different Reynolds number is
hown in Fig. 5. The calculated coefficient of variance gradually
ecreases with increasing number of cycles at all values of Re.
he change in coefficient of variance with increasing number
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nentially with the number of mixing cycles at every Reynolds
number considered. The values of α50 were found to be similar
with no particular trend with respect to Re with α50 = 0.75 ± 0.01
in all cases. From the results of the mixing simulations, the form
ig. 5. Change in coefficient of variance with number of mixing cycles at various
e (All data points at different Re overlap).

f cycles at Re = 0.001 to 10 were observed to be very similar.
he value of the coefficient B was ∼0.023 ± 0.002 in all cases
onsidered, indicating little difference in mixing rates. This is
onsistent with the qualitative evaluation of the striation patterns
ormed, which were observed to be independent of Re.

The total number of particles at each end-of-cycle cross-
ection gradually decreases from the initial number of particles
eleased at the inlet, resulting in decreasing number of tracked
oints with increasing mixer cycle, which affects the accuracy of
he calculations. This is due to increasingly more particles being
eft behind in the cycle grooves, as a result of the dead volumes
n the mixer. The number of tracked points reduced by an aver-
ge of 201 particles for every cycle, which represents an average
eduction of 6% per cycle. Additionally, the grid size used in the
alculations may limit the resolution of mixture homogeniza-
ion. While increased resolution can be obtained by using a finer
rid, this would also require a much larger number of particles to
e tracked (to minimise statistical uncertainty), hence the num-
er of grid cells cannot be increased indefinitely (see [18]). In
his sense, the coefficient of variance and other statistical meth-
ds of quantifying mixers are probably not a good method for
omparing mixing performance in the staggered herringbone
ixer.

.4. Stretching

Another method which has been used to quantify the rate
f mixing is the computation of the stretching histories along
ith the trajectories of a set of material elements placed within

he flow [18,19,24]. This method has been employed in evaluat-
ng the mixing and chaotic behaviour in two-dimensional, time
eriodic flows as well as three-dimensional static mixers. The
ey to effective mixing is in producing the maximum amount
f interfacial area between two initially segregated fluids in the
inimum amount of time. The amount of intermaterial surface

enerated in a region is directly proportional to the amount of
tretching experienced by fluid elements in that region; regions
ith high rates of stretching provide good mixing while regions

ith low rates of stretching provide poor mixing. The distance
etween striations, is inversely proportional to the surface area.
ence, the rate of stretching and folding affects the rate of
icromixing by both reducing the striation thickness (and hence

F
a

ering Journal 142 (2008) 109–121 117

he diffusional distance) and increasing the interfacial area for
nterdiffusion of components [35]. Chaotic flow is associated
ith an exponential increase in stretching and folding, resulting

n a corresponding decrease in the axial length required for com-
lete mixing. Stretching computations can be used to evaluate
he chaotic behaviour and hence mixing efficiency in the mix-
rs, which for a time periodic system, can be expressed by the
yapunov exponent, δ = lim

t→∞(ln λ/t) [24,36]. The stretching

omputations can also be used to characterize the distribution of
ixing intensities from the distribution of stretching magnitudes

n the mixer flow [18,19].
For the stretching calculations, 4100 particles were placed

niformly across the channel cross-section at the mixer entrance,
�m away from the channel walls in the x-direction and 2 �m
way in the z-direction. The tracer particle position and the accu-
ulated length stretch were tracked along the mixer length as

escribed earlier. At every periodic plane, both the tracer particle
osition and the components of the stretch vector were recorded.
he geometric mean stretching values for all N tracer particles
as computed at every periodic plane from

g,50 =
(

N∏
i=1

λi

)1/N

(7)

The specific stretch per period, α50 for a spatially periodic
ow, which is the direct analog of the Lyapunov exponent, δ for
time periodic flow [18,19,24], was computed from

50 = lim
n→∞

[
1

n
ln λg,50

]
, n = mixing cycle number (8)

The ln 〈λg,50〉 is plotted against the number of mixing cycles
n Fig. 6 for Re = 0.001, 0.01, 0.03, 1 and 10. In chaotic flows,
he value α50 tends to positive limit values implying exponential
tretching and growth of inter material area (on average) while
n regular flows this value tends to zero [36]. The values of α50
t different Reynolds number were obtained from the gradients
f the plots in Fig. 6. The mean stretch, λg,50 increases expo-
ig. 6. Change in mean stretch of all vectors, λg,50 vs. number of mixing cycles
t various Re (data points at different Re overlap).
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the mean, as illustrated in Fig. 9(inset). The logarithm of 〈λg,90〉
is plotted against the number of mixing cycles in Fig. 9. The
values of α90 (which represents the rate of increase of λg,90) at
18 S.P. Kee, A. Gavriilidis / Chemical E

f the flow remains qualitatively the same at different Re number,
hich is in agreement with published findings [17,26,30]. The
ifference in mixing uniformity at various Pe number observed
xperimentally can be attributed to the effects of molecular dif-
usion and hence to compute the required length for complete
ixing, the role of molecular diffusion must also be considered.

.5. Mixing length calculation

As mentioned earlier, the exponential stretching of fluid
lements accelerates mixing in two different ways, that is by
educing the striation thickness and by generating a greater
nterfacial area for molecular diffusion. The ratio of penetra-
ion distance by molecular diffusion to striation thickness for a
ime-periodic system evolves along the mixer length according
o [35]

δx

s(0) e−δt
=
[

D

(s(0))22δ
(e2δt − 1)

]1/2

(9)

For a spatially periodic flow, the penetration distance due to
olecular diffusion increases along the mixer length while the

triation thickness is reduced from s(0) to s(n), according to the
tretching function, α. Eq. (9) for a spatially periodic system
hen becomes

δx

s(0) e−αn
=
[

Dτ

(s(0))22α
(e2αn − 1)

]1/2

(10)

here τ is the residence time per mixing cycle. Mixing is
ssumed to be complete when the penetration distance from
olecular diffusion becomes equal to the striation thickness

35]. This happens when

=
[

Dτ

(s(0))22α
(e2αn − 1)

]1/2

(11)

Rearranging Eq. (11), nmix the number of mixing cycles
equired (and hence y, the length) for complete mixing is deter-
ined from

mix = ln(((s(0))22α/Dτ) + 1)

2α
(12)

= nmix · Lcycle (13)

The required mixing lengths (y50) computed using the mean
tretch values (α50) are shown in Fig. 7 along with mixing
engths obtained experimentally by Stroock et al. [17]. The mix-
ng lengths calculated using the specific stretch per period were
bserved to be different from those derived experimentally.

This can be due to the following:

The experimentally derived values are based on measure-
ments in the central 50% of the cross-sectional area, where
striation thickness reduction is much slower than say, at the

bottom or sides of the channel. Additionally, the experimen-
tally derived mixing lengths were determined for 90% mixing.
The specific stretch per period used to compute the mixing
lengths was derived from the mean stretch values in each

t
a
a

Fig. 7. Computed and experimentally derived mixing lengths vs. ln(Pe).

period (this represents rate of increase in the mean stretch val-
ues with increasing mixing cycle), when in reality there exists
a log-normal distribution of stretch values [35], as shown in
Fig. 8. The scatter plots represent the probability density cal-
culated from frequency data for the stretch values at various
mixing cycles while the smooth lines represent normal dis-
tribution curves fitted using the computed mean and standard
deviation values. The normal distribution is defined as the
distribution with density:

f (X) = 1

σ
√

2π
e−1/2(X−m/σ)2

(14)

where X represents ln(λ), m represents the mean and σ repre-
sents the standard deviation.
The accuracy of the computed stretch values can be sensitive
to the time step used. While this problem may be alleviated
using a smaller time step and implementing adaptive time-step
control, there is a trade-off between using an infinitely small
time step to improve accuracy and running the simulation
for a sufficiently long time to ensure a substantial number of
particles are advected to the end of the mixing cycles (smaller
time step means that for the same run time, the particles may
not reach the same axial distance downstream of the entrance,
resulting in smaller sample size).

In the design of mixers, it is of interest to ensure that the
ixer length provided can achieve sufficient mixing. One way

f doing this, which avoids the problems mentioned above, is by
sing a method which allows a conservative estimate of required
ixing length to be made. This can be done by replacing the

eometric mean stretching λg,50, which represents the cut-off
oint at which 50% of the stretch values have a higher value,
ith a lower cut-off point in which at least 90% of the stretch
alues are higher. Using the z-score,1 this lower cut-off point was
etermined to be at 1.2816 times the standard deviation below
1 The z-score for a value y of a data set is the distance that y lies above or below
he mean, measured in units of the standard deviation. The z-score is defined
s z = y − m/σ. The cut-off point was determined from a table of normal curve
reas [37].
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grooves reduce the energy costs compared to a plain chan-
Fig. 8. Log-normal distribut

ifferent Reynolds number were calculated from the gradients
f the plots in Fig. 9, to be =0.43 ± 0.01 for all cases. This gives
conservative mixing length value and can be thought of as

he point where 90% of the mixture has a penetration distance
t least equal to the striation thickness. The required number of
ixing cycles and hence mixing length can be similarly obtained

rom equations:

90 = ln(((s(0))22α90/Dτ) + 1)

2α90
(15)

90 = n90 · Lcycle (16)

As seen in Fig. 7, the staggered herringbone mixer allows
apid mixing even at high Pe numbers. In the same figure, the
equired mixing length in a plain channel with characteristic
ength d, by diffusion alone is plotted from ydif = ū x(d2/D) =
x Pe (see “Diffusional” in Fig. 7). It is clearly seen that the
erringbone mixer shows a marked reduction in mixing length
o that required for diffusive mixing alone.

.6. Pressure drop
The pressure drop across one cycle of the staggered herring-
one mixer was obtained from the velocity field simulation and is
resented in Fig. 10 as a function of Re. For comparison, the pres-

ig. 9. Change in stretch value, λg,90 vs. number of mixing cycles at various Re
data points at different Re overlap).

n

F

stretch values at Re = 0.01.

ure drop across a grooveless channel of the same dimensions
s also plotted in Fig. 10. The latter is calculated using

P = 128μLQ

πd4
E

(17)

The pressure drop increased linearly with Reynolds number
nd was slightly lower than the pressure drop in a grooveless
hannel by 7.5% at Re < 10. It has been previously reported
hat the presence of grooves effectively weakens the no-slip
ondition, resulting in lowering of the pressure drop compared
o that in a simple grooveless channel [34]. The groove type,
roove depth and number of grooves per cycle have negli-
ible effect on the pressure drop although the width of the
rooves appears to have a stronger effect on pressure drop
24,25]. These results further demonstrate the potential ben-
fits of using the staggered herringbone mixer to enhance
ixing, as unlike static mixing elements, the presence of the
el.

ig. 10. Change in pressure drop across one mixing cycle with Reynolds number.
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. Conclusions

The mixing performance of the staggered herringbone mixer
as evaluated numerically at Re = 0.001–10. The velocity field
as obtained via CFD simulations. Particle tracking methods
ere used to quantify the mixing performance to avoid numer-

cal diffusion problems. Mixing is enhanced in the staggered
erringbone mixer by the formation of a double helical flow in
he mixer which alternates from one side of the channel to the
ther, depending on the asymmetry of the herringbone grooves
s well as by ditch mixing, where fluid from one side of the chan-
el is transported to the opposite side via the grooves, resulting
n increased contact area for mixing. The particle distribution
t the end of every mixing cycle was obtained for all cases and
he striation patterns were found to be qualitatively similar to
ublished work.

Several methods to quantify the mixing performance of the
taggered herringbone mixer were investigated. The coefficient
f variance at the end of each mixing cycle was computed
nd the mixing quality was found to be independent of Re.
he stretching histories for material elements associated with
ach particle tracer were also computed. The specific stretch
er cycle was obtained from the stretching calculations and
aking into account the effects of diffusion, the mixing length
equired for complete mixing was evaluated. The calculated
ixing lengths were lower than experimentally derived values.
he difference in calculated and experimentally derived values
ould be due to the fact that the experimentally derived values
ere based on measurements in the central 50% of the mixer

ross-sectional area. Additionally, the specific stretch per cycle
sed to compute the mixing lengths were derived from the mean
tretch values in each cycle, while in practice, there exists a
og-normal distribution of stretch values. Using α90, which rep-
esents the rate of increase of λg,90 values (cut-off point for
g in which 90% of the computed stretch values are higher),
llowed for a conservative estimate of required mixing length to
e made.
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